DDS图像格式

名词解释

DDS是一种图片格式。DirectDraw Surface的缩写,它是DirectX纹理压缩(DirectX Texture Compression,简称DXTC)的产物。 我们可以利用一些程序轻松地将bmp,tga等文件转化为dds文件,也有photo, gimp的插件能帮助我们利用我们所熟悉的工具来完成转化工作。dds档还起到了压缩文件大小的作用,这在游戏制作中是很重要的,更小的纹理容量意味着显示速度的增加和显存要求的降低在选择生成文件时,有多种格式可供选择。 DDS文件格式要追述到S3(Silicon & Software Systems)公司提出的一种纹理压缩格式S3TC(S3 Texture Compression), 其目的是通过对纹理的压缩, 以达到节约系统带宽并提高效能的目的. S3TC就是通过压缩方式, 利用有限的纹理缓存空间来存储更多的纹理, 因为它支持6:1的压缩比例, 所以6M的纹理可以被压缩为1M存放在材质缓存中, 从而在节约了缓存的同时也提高了显示性能. 后来的DXTC和FXT1都是与S3TC类似的技术, 它们分别是微软和3dfx开发的纹理压缩标准, FXT1能提供比S3TC更高的压缩比, 达到8:1, 同时它也在3DFX新版本的Glide中得到支持. DXTC是1999年微软从S3公司取得S3TC的授权后更名而来的, 并在DirectX6中提供了支持, 即使用户的图形硬件不能支持S3TC, DirectX API会自动解码压缩后的纹理贴图. 压缩纹理贴图可以使用高品质的离线压缩器, 不会造成加载程序时有很多延时, 而DDS文件就可以使用DXTC方式压缩或是存储未压缩的像素格式。

格式介绍

有3种DXTC的格式可供使用,分别是DXT1,DXT3和DXT5。

  • DXT1 压缩比例:1:8 压缩比最高,它只有1Bit Alpha,Alpha通道信息几乎完全丧失。一般将不带Alpha通道的图片压缩成这种格式。如Worldwind 用的卫星图片。

DXT1 支持 1 bit 的 alpha 通道。这个其实是可选的。每个 4×4 的块可以根据需要有或没有这个透明通道。不需要 alpha 通道时,每个块可以有四种颜色(其中两个是插值得到的);需要 alpha 通道时,则只能有三种颜色,11 被保留用来描述透明的点。区分是否用通道,要根据每个块开始的两个高彩颜色值:color_0 和color_1 。如果 color_0 在数值上(当作无符号短整型)大于 color_1 则没有通道。 可惜的是,在 dds 文件的文件头中,没有任何一个地方描述了:整个图片是否有至少一个块包含了 alpha 通道。但是在 3d 程序中,却需要知道这一信息以使程序可以更高效的运行。 对于软解码程序,更需要知道这一信息。因为带通道时,我们需要把数据解码成 RGBA5551 的格式;而不带通道时,则需要解码成 RGB565 格式。 一开始我以为需要扫描整个数据段,检查是否至少有一个块的 color_0 小于等于 color_1 。实际看了几个用工具生成的 dds 文件才发现自己错了。nvidia 的 dxt tools 压缩 DXT1 图片时,需要手动指明是否需要 1 bit 的通道。如果你指定不带通道,那么每个 4×4 数据块头上的两个调色盘颜色值的大小次序是无关的(这样做,由于插值方案的差异,有可能得到更好一点的图象质量)。也就是说,只有压缩图片的人知道图片上是否有通道,而文件头上并无记录。

  • DXT3 压缩比例:1:4 使用了4Bit Alpha,可以有16个Alpha值,可很好地用于alpha通道锐利、对比强烈的半透和镂空材质。

DXT3 就是在 DXT1 的基础上,增加了 4bit 的 alpha 通道,每个 4×4 块多用了 64bit 来保存这些 alpha 通道信息。(数据储存时,在每个数据块中,alpha 通道信息放在颜色信息的前面)

  • DXT5 压缩比例:1:4 使用了线形插值的4Bit Alpha,特别适合Alpha通道柔和的材质,比如高光掩码材质。

DXT5 对 alpha 通道的储存作了改进,有点意思,值得一提的是:它依旧用 64bit 储存 16 个 alpha 信息。前面 2 个字节(16bit)保存了当前块的最大 alpha 值和最小 alpha 值。接下来的 48 bit ,每个像素占用 3bit 空间,刚好描述 4×4 个像素。 当 alpha_0 大于 alpha_1时,我们后面的 3bit 可以表示 8 级的插值;反之则保留 110 和 111 分别表示 alpha 为 0 和 255 的情况,中间可以有 6 级过度的插值。

DDS压缩

如果要使用dds压缩,源图片的长宽必须是2的整数次方。

ref1: http://baike.baidu.com/view/5470373.htm ref2: http://blog.codingnow.com/2007/05/dxt.html

C++创建DDS文件

OS: ubuntu12.04

创建DDS文件头

这里只使用DXT1压缩,mipmaps为1,输入格式为GBR

   #define PUTL32(buf, l) \
        (buf)[0] = ((l)      ) & 0xff; \
	(buf)[1] = ((l) >>  8) & 0xff; \
	(buf)[2] = ((l) >> 16) & 0xff; \
	(buf)[3] = ((l) >> 24) & 0xff;

    int compression = DDS_COMPRESS_BC1;
    unsigned int rmask = 0x00ff0000;
    unsigned int gmask = 0x0000ff00;
    unsigned int bmask = 0x000000ff;
    unsigned int amask = 0xff000000;
    unsigned int data_size = 0;
    unsigned int ddsSZ = 0;
    unsigned int fourcc = 0;

    unsigned char hdr[DDS_HEADERSIZE] = {0};
    int fmtbpp = 3, flags = 0, pflags = 0, caps = 0, caps2 = 0, num_mipmaps = 1, size = 0;

    PUTL32(hdr, FOURCC('D', 'D', 'S', ' '));
    PUTL32(hdr + 4, 124);
    PUTL32(hdr + 12, height);
    PUTL32(hdr + 16, width);
    PUTL32(hdr + 76, 32);
    PUTL32(hdr + 88, fmtbpp << 3);
    PUTL32(hdr + 92, rmask);
    PUTL32(hdr + 96, gmask);
    PUTL32(hdr + 100, bmask);
    PUTL32(hdr + 104, amask);

    flags = DDSD_CAPS | DDSD_PIXELFORMAT | DDSD_WIDTH | DDSD_HEIGHT;
    caps = DDSCAPS_TEXTURE;

    PUTL32(hdr + 28, num_mipmaps);
    PUTL32(hdr + 108, caps);
    PUTL32(hdr + 112, caps2);

    flags |= DDSD_LINEARSIZE;
    pflags |= DDPF_FOURCC;
    fourcc = FOURCC('D', 'X', 'T', '1');

    PUTL32(hdr + 8, flags);
    PUTL32(hdr + 80, pflags);
    PUTL32(hdr + 84, fourcc);

    size = ((width + 3) >> 2) * ((height + 3) >> 2);
    size *= 8;

    PUTL32(hdr + 20, size);

BMP图像格式

BMP(全称Bitmap)是Window操作系统中的标准图像文件格式,可以分成两类:设备相关位图(DDB)和设备无关位图(DIB),使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。

文件格式

格式组成

典型的BMP图像文件由四部分组成:

  • 位图头文件数据结构,它包含BMP图像文件的类型、显示内容等信息;
  • 位图信息数据结构,它包含有BMP图像的宽、高、压缩方法,以及定义颜色等信息;
  • 调色板,这个部分是可选的,有些位图需要调色板,有些位图,比如真彩色图(24位的BMP)就不需要调色板;
  • 位图数据,这部分的内容根据BMP位图使用的位数不同而不同,在24位图中直接使用RGB,而其他的小于24位的使用调色板中颜色索引值。

格式类型

位图一共有两种类型,即:设备相关位图(DDB)和设备无关位图(DIB)。DDB位图在早期的Windows系统(Windows 3.0以前)中是很普遍的,事实上它也是唯一的。然而,随着显示器制造技术的进步,以及显示设备的多样化,DDB位图的一些固有的问题开始浮现出来了。比如,它不能够存储(或者说获取)创建这张图片的原始设备的分辨率,这样,应用程序就不能快速的判断客户机的显示设备是否适合显示这张图片。为了解决这一难题,微软创建了DIB位图格式。 设备无关位图 (Device-Independent Bitmap) DIB位图包含下列的颜色和尺寸信息:

  • 原始设备(即创建图片的设备)的颜色格式。
  • 原始设备的分辨率。
  • 原始设备的调色板
  • 一个位数组,由红、绿、蓝(RGB)三个值代表一个像素。
  • 一个数组压缩标志,用于表明数据的压缩方案(如果需要的话)。

以上这些信息保存在BITMAPINFO结构中,该结构由BITMAPINFOHEADER结构和两个或更多个RGBQUAD结构所组成。BITMAPINFOHEADER结构所包含的成员表明了图像的尺寸、原始设备的颜色格式、以及数据压缩方案等信息。RGBQUAD结构标识了像素所用到的颜色数据。 DIB位图也有两种形式,即:底到上型DIB(bottom-up),和顶到下型DIB(top-down)。底到上型DIB的原点(origin)在图像的左下角,而顶到下型DIB的原点在图像的左上角。如果DIB的高度值(由BITMAPINFOHEADER结构中的biHeight成员标识)是一个正值,那么就表明这个DIB是一个底到上型DIB,如果高度值是一个负值,那么它就是一个顶到下型DIB。注意:顶到下型的DIB位图是不能被压缩的。 位图的颜色格式是通过颜色面板值(planes)和颜色位值(bitcount)计算得来的,颜色面板值永远是1,而颜色位值则可以是1、4、8、16、24、32其中的一个。如果它是1,则表示位图是一张单色位图(译者注:通常是黑白位图,只有黑和白两种颜色,当然它也可以是任意两种指定的颜色),如果它是4,则表示这是一张VGA位图,如果它是8、16、24、或是32,则表示该位图是其他设备所产生的位图。如果应用程序想获取当前显示设备(或打印机)的颜色位值(或称位深度),可调用API函数GetDeviceCaps(),并将第二个参数设为BITSPIXEL即可。 显示设备的分辨率是以每米多少个像素来表明的,应用程序可以通过以下三个步骤来获取显示设备或打印机的水平分辨率:

  • 调用GetDeviceCaps()函数,指定第二个参数为HORZRES。
  • 再次调用GetDeviceCaps()函数,指定第二个参数为HORZSIZE。
  • 用第一个返回值除以第二个返回值。即:GetDeviceCaps(hDC,HORZRES)/GetDeviceCaps(hDC,HORZSIZE);

应用程序也可以使用相同的三个步骤来获取设备的垂直分辨率,不同之处只是要将HORZRES替换为VERTRES,把HORZSIZE替换为VERTSIZE,即可。 调色板是被保存在一个RGBQUAD结构的数组中,该结构指出了每一种颜色的红、绿、蓝的分量值。位数组中的每一个索引都对应于一个调色板项(即一个RGBQUAD结构),应用程序将根据这种对应关系,将像素索引值转换为像素RGB值(真实的像素颜色)。应用程序也可以通过调用GetDeviceCaps()函数来获取当前显示设备的调色板尺寸(将该函数的第二个参数设为NUMCOLORS即可)。 Win32 API支持位数据的压缩(只对8位和4位的底到上型DIB位图)。压缩方法是采用运行长度编码方案(RLE),RLE使用两个字节来描述一个句法,第一个字节表示重复像素的个数,第二个字节表示重复像素的索引值。有关压缩位图的详细信息请参见对BITMAPINFOHEADER结构的解释。 应用程序可以从一个DDB位图创建出一个DIB位图,步骤是,先初始化一些必要的结构,然后再调用GetDIBits()函数。不过,有些显示设备有可能不支持这个函数,你可以通过调用GetDeviceCaps()函数来确定一下(GetDeviceCaps()函数在调用时指定RC_DI_BITMAP作为RASTERCAPS的标志)。 应用程序可以用DIB去设置显示设备上的像素(译者注:也就是显示DIB),方法是调用SetDIBitsToDevice()函数或调用StretchDIBits()函数。同样,有些显示设备也有可能不支持以上这两个函数,这时你可以指定RC_DIBTODEV作为RASTERCAPS标志,然后调用GetDeviceCaps()函数来判断该设备是否支持SetDIBitsToDevice()函数。也可以指定RC_STRETCHDIB作为RASTERCAPS标志来调用GetDeviceCaps()函数,来判断该设备是否支持StretchDIBits()函数。 如果应用程序只是要简单的显示一个已经存在的DIB位图,那么它只要调用SetDIBitsToDevice()函数就可以。比如一个电子表格软件,它可以打开一个图表文件,在窗口中简单的调用SetDIBitsToDevice()函数,将图形显示在窗口中。但如果应用程序要重复的绘制位图的话,则应该使用BitBlt()函数,因为BitBlt()函数的执行速度要比SetDIBitsToDevice()函数快很多。 设备相关位图 (Device-Dependent Bitmaps) 设备相关位图(DDB)之所以现在还被系统支持,只是为了兼容旧的Windows 3.0软件,如果程序员现在要开发一个与位图有关的程序,则应该尽量使用或生成DIB格式的位图。 DDB位图是被一个单个结构BITMAP所描述,这个结构的成员标明了该位图的宽度、高度、设备的颜色格式等信息。 DDB位图也有两种类型,即:可废弃的(discardable)DDB和不可废弃的(nondiscardable)DDB。可废弃的DDB位图就是一种当系统内存缺乏,并且该位图也没有被选入设备描述表(DC)的时候,系统就会把该DDB位图从内存中清除(即废弃)。不可废弃的DDB则是无论系统内存多少都不会被系统清除的DDB。API函数CreateDiscardableBitmap()函数可用于创建可废弃位图。而函数CreateBitmap()、CreateCompatibleBitmap()、和CreateBitmapIndirect()可用于创建不可废弃的位图。 应用程序可以通过一个DIB位图而创建一个DDB位图,只要先初始化一些必要的结构,然后再调用CreateDIBitmap()函数就可以。如果在调用该函数时指定了CBM_INIT标志,那么这一次调用就等价于先调用CreateCompatibleBitmap()创建当前设备格式的DDB位图,然后又调用SetDIBits()函数转换DIB格式到DDB格式。(可能有些设备并不支持SetDIBits()函数,你可以指定RC_DI_BITMAP作为RASTERCAPS的标志,然后调用GetDeviceCaps()函数来判断一下)。 对应数据结构

  • BMP文件组成

BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成。

  • BMP文件头(14字节)

BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。 其结构定义如下:

typedef struct tagBITMAPFILEHEADER
{
	WORD bfType; // 位图文件的类型,必须为BM(1-2字节)
	DWORD bfSize; // 位图文件的大小,以字节为单位(3-6字节)
	WORD bfReserved1; // 位图文件保留字,必须为0(7-8字节)
	WORD bfReserved2; // 位图文件保留字,必须为0(9-10字节)
	DWORD bfOffBits; // 位图数据的起始位置,以相对于位图(11-14字节)
	// 文件头的偏移量表示,以字节为单位
} BITMAPFILEHEADER;
  • 位图信息头(40字节)

BMP位图信息头数据用于说明位图的尺寸等信息。 typedef struct tagBITMAPINFOHEADER{ DWORD biSize; // 本结构所占用字节数(15-18字节) LONG biWidth; // 位图的宽度,以像素为单位(19-22字节) LONG biHeight; // 位图的高度,以像素为单位(23-26字节) WORD biPlanes; // 目标设备的级别,必须为1(27-28字节) WORD biBitCount;// 每个像素所需的位数,必须是1(双色),(29-30字节) // 4(16色),8(256色)或24(真彩色)之一 DWORD biCompression; // 位图压缩类型,必须是 0(不压缩),(31-34字节) // 1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一 DWORD biSizeImage; // 位图的大小,以字节为单位(35-38字节) LONG biXPelsPerMeter; // 位图水平分辨率,每米像素数(39-42字节) LONG biYPelsPerMeter; // 位图垂直分辨率,每米像素数(43-46字节) DWORD biClrUsed;// 位图实际使用的颜色表中的颜色数(47-50字节) DWORD biClrImportant;// 位图显示过程中重要的颜色数(51-54字节) } BITMAPINFOHEADER;

  • 颜色表

颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色。RGBQUAD结构的定义如下: typedef struct tagRGBQUAD { BYTE rgbBlue;// 蓝色的亮度(值范围为0-255) BYTE rgbGreen; // 绿色的亮度(值范围为0-255) BYTE rgbRed; // 红色的亮度(值范围为0-255) BYTE rgbReserved;// 保留,必须为0 } RGBQUAD; 颜色表中RGBQUAD结构数据的个数有biBitCount来确定: 当biBitCount=1,4,8时,分别有2,16,256个表项; 当biBitCount=24时,没有颜色表项。 位图信息头和颜色表组成位图信息,BITMAPINFO结构定义如下: typedef struct tagBITMAPINFO { BITMAPINFOHEADER bmiHeader; // 位图信息头 RGBQUAD bmiColors[1]; // 颜色表 } BITMAPINFO;

  • 位图数据

位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上。位图的一个像素值所占的字节数: 当biBitCount=1时,8个像素占1个字节; 当biBitCount=4时,2个像素占1个字节; 当biBitCount=8时,1个像素占1个字节; 当biBitCount=24时,1个像素占3个字节; Windows规定一个扫描行所占的字节数必须是 4的倍数(即以long为单位),不足的以0填充, biSizeImage = ((((bi.biWidth * bi.biBitCount) + 31) & ~31) / 8) * bi.biHeight; 具体数据举例: 如某BMP文件开头: 424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 01001000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 000000F8 E007 1F00 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2 …. …. 读取方法

/*
功能:在图片的第50行画一条黑线
为简化代码,只支持24位色的图片
codeblocks下正确运行。VC下需要将二维数组img改为malloc动态分配。
*/
#include 
#include 
typedef struct{
BYTE b;
BYTE g;
BYTE r;
}RGB;
int main( void )
{
BITMAPFILEHEADER fileHeader;
BITMAPINFOHEADER infoHeader;
FILE* pfin =fopen("原始图像.bmp","rb");
FILE* pfout = fopen( "修改后的图像.bmp" , "wb");
//Read the Bitmap file header;
fread(&fileHeader,sizeof(BITMAPFILEHEADER),1,pfin);
//Read the Bitmap info header;
fread(&infoHeader,sizeof(BITMAPINFOHEADER),1,pfin);
//为简化代码,只处理24位彩色
if( infoHeader.biBitCount == 24 )
{
int size = infoHeader.biWidth*infoHeader.biHeight;
RGB img[infoHeader.biHeight][infoHeader.biWidth];
fread( img , sizeof(RGB) , size , pfin );
//把第50行染成黑色
int i = 0;
for( ; i < infoHeader.biWidth ; i++ )
{
img[50][i].b =img[50][i].g=img[50][i].r= 0;
}
//将修改后的图片保存到文件
fwrite( &fileHeader , sizeof(fileHeader) , 1 , pfout );
fwrite( &infoHeader , sizeof(infoHeader) , 1 , pfout );
fwrite( img , sizeof(RGB) , size , pfout );
}
}

文件部分

图像文件头

1)1-2:(这里的数字代表的是”字”,即两个字节,下同)图像文件头。0x4d42=’BM’,表示是Windows支持的BMP格式。(注意:查ascii表B 0x42,M0x4d,bfType 为两个字节,B为low字节,M为high字节所以bfType=0x4D42,而不是0x424D,但注意) 2)3-6:整个文件大小。4690 0000,为00009046h=36934。 3)7-8:保留,必须设置为0。 4)9-10:保留,必须设置为0。 5)11-14:从文件开始到位图数据之间的偏移量(14+40+4*(2^biBitCount))。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。

位图信息头

6)15-18:位图图信息头长度。 7) 19-22:位图宽度,以像素为单位。8000 0000,为00000080h=128。 8)23-26:位图高度,以像素为单位。9000 0000,为00000090h=144。 9)27-28:位图的位面数,该值总是1。0100,为0001h=1。 10)29-30:每个像素的位数。有1(单色),4(16色),8(256色),16(64K色,高彩色),24(16M色,真彩色),32(4096M色,增强型真彩色)。1000为0010h=16。 11)31-34:压缩说明:有0(不压缩),1(RLE 8,8位RLE压缩),2(RLE 4,4位RLE压缩,3(Bitfields,位域存放)。RLE简单地说是采用像素数+像素值的方式进行压缩。T408采用的是位域存放方式,用两个字节表示一个像素,位域分配为r5b6g5。图中0300 0000为00000003h=3。 12)35-38:用字节数表示的位图数据的大小,该数必须是4的倍数,数值上等于(≥位图宽度的最小的4的倍数)×位图高度×每个像素位数。0090 0000为00009000h=80×90×2h=36864。 13)39-42:用象素/米表示的水平分辨率。A00F 0000为0000 0FA0h=4000。 14)43-46:用象素/米表示的垂直分辨率。A00F 0000为0000 0FA0h=4000。 15)47-50:位图使用的颜色索引数。设为0的话,则说明使用所有调色板项。 16)51-54:对图象显示有重要影响的颜色索引的数目。如果是0,表示都重要。

彩色板

17)(55+0)到(50-1+2^biBitCount):彩色板规范。对于调色板中的每个表项,用下述方法来描述RGB的值: 1字节用于蓝色分量 1字节用于绿色分量 1字节用于红色分量 1字节用于填充符(设置为0) 对于24-位真彩色图像就不使用彩色板,因为位图中的RGB值就代表了每个象素的颜色。 如,彩色板为00F8 0000 E007 0000 1F00 0000 0000 0000,其中: 00F8为F800h = 1111 1000 0000 0000(二进制),是蓝色分量的掩码。 E007 为 07E0h = 0000 0111 1110 0000(二进制),是绿色分量的掩码。 1F00为001Fh = 0000 0000 0001 [1]1111(二进制),是红色分量的掩码。 0000 总设置为0。 将掩码跟像素值进行“与”运算再进行移位操作就可以得到各色分量值。看看掩码,就可以明白事实上在每个像素值的两个字节16位中,按从高到低取5、6、5位分别就是r、g、b分量值。取出分量值后把r、g、b值分别乘以8、4、8就可以补齐第个分量为一个字节,再把这三个字节按rgb组合,放入存储器(同样要反序),就可以转换为24位标准BMP格式了。 图像数据阵列 18)55(无调色板)-bfSize:每两个字节表示一个像素。阵列中的第一个字节表示位图左下角的象素,而最后一个字节表示位图右上角的象素。

图像数据阵列

每两个字节表示一个像素。阵列中的第一个字节表示位图左下角的象素,而最后一个字节表示位图右上角的象素。

存储算法

BMP文件通常是不压缩的,所以它们通常比同一幅图像的压缩图像文件格式要大很多。例如,一个800×600的24位几乎占据1.4MB空间。因此它们通常不适合在因特网或者其它低速或者有容量限制的媒介上进行传输。根据颜色深度的不同,图像上的一个像素可以用一个或者多个字节表示,它由n/8所确定(n是位深度,1字节包含8个数据位)。图片浏览器等基于字节的ASCII值计算像素的颜色,然后从调色板中读出相应的值。更为详细的信息请参阅下面关于位图文件的部分。n位2n种颜色的位图近似字节数可以用下面的公式计算:BMP文件大小约等于 54+42的n次方+(wh*n)/8,其中高度和宽度都是像素数。需要注意的是上面公式中的54是位图文件的文件头,是彩色调色板的大小。另外需要注意的是这是一个近似值,对于n位的位图图像来说,尽管可能有最多2n中颜色,一个特定的图像可能并不会使用这些所有的颜色。由于彩色调色板仅仅定义了图像所用的颜色,所以实际的彩色调色板将小于。如果想知道这些值是如何得到的,请参考下面文件格式的部分。由于存储算法本身决定的因素,根据几个图像参数的不同计算出的大小与实际的文件大小将会有一些细小的差别。

存储序列

图象数据BGRA:默认的BMP是不支持ALPHA通道的,但对32位BMP而言,每个象素用32位(4个字节)表示,前三个字节表示RGB分量,最后一个字节可以做为ALPHA通道的值,因此32位位图可以存储带ALPHA通道的图像,在文件中,各分量的存储顺序为BGRA,BGRA,BGRA,BGRA… 另外要注意的是,BMP图像的象素存储顺序是从下到上

QGraphicsScene QGraphicsView QGraphicsItem

Graphics View提供了一个界面,它既可以管理大数量的定制2D graphical items,又可与它们交互,有一个view widget可以把这些项绘制出来,并支持旋转与缩放。这个柜架也包含一个事件传播结构,对于在scene中的这些items,它具有双精度的交互能力。Items能处理键盘事件,鼠标的按,移动、释放、双击事件,也可以跟踪鼠标移动。Graphics View使用BSP树来提供对item的快速查找,使用这种技术,它可以实时地绘制大规模场景,甚至以百万items计。Graphics View在Qt 4.2中被引用,它替代了它的前辈QCanvas。

Graphics View的体系结构

Graphics View提供的是一种类似于Qt model-view的编程。多个views可以监视同一个场景,而场景包含多个具有多种几何外形的items。

场景

QGraphicsScene 表示Graphics View中的场景,它有以下职责: 为管理大量的items提供一个快速的接口。 传播事件到每个item。 管理item的状态,例如选择,焦点处理。 提供未经变换的渲染功能,主要用于打印。 场景作为QGraphicsItem对象的容器。通过调用QgraphicsScene::addItem()把这些Items加入到场景中。可以使用众多的查找函数来获取特定的items。QGraphicsScene:items()与它的许多重载函数可获取那些与点、矩形,多边形,向量路径等相交或是有包含有关系的items。QGraphicsScene::itemAt()返回特定上最顶端的item。所有的item查找函数都以出栈序列返回(也就是说,第一个返回的是最顶端的,最后一个返回的是最底端的)。 QGraphicsScene scene; QGraphicsRectItem *rect=scene.addRect(QRectF(0,0,100,100)); QGraphicsItem *item=scene.itemAt(50,50); //item==rect; QGraphicsScene的事件传播结构会把场景事件投递到items,也管理多个items之间的传递。假如场景收到了鼠标在某个位置press事件,场景会把这个事件投递给处在那个位置的item。QGraphicsScene也管理某种item状态,像选择与焦点。你可以通过调用QGraphicsScene::setSelectionArea()来选择items,它需要提供一个任意的形状为参数。这个函数也作为在QGraphicsView实现橡皮筋选择功能的一个基础。为得到这些已经被选择的items,调用QGraphicsScene::selectedItem()。另一个状态处理是是否一个item拥有键盘输入焦点。你可以调用QGraphicsScene::setFocusItem()或QGraphics::setFocus()来设定焦点,也可用QGraphicsScene::focusItem()来得到当前拥有焦点的那个item。最后,QGraphicsScene允许你通过调用QGraphicsScene::render()函数把部分场景送到绘图设备进行渲染。

视图

QGraphicsView提供了视图部件,它可视化场景中的内容。你可以联结多个视图到同一个场景,对这个相同的数据集提供几个视口。视口部件是一个滚动区域,它提供了滚动条以对大场景进行浏览。为了使用OpenGL,你应该调用QGraphicsView::setViewport()来把一个QGLWidget设为视口。视图从键盘,鼠标接收输入事件,在发送这些事件到场景之前,会对这些事件进行适当的翻译(把事件坐标转换成对应的场景坐标)。

利用转换矩阵,QGraphicsView::matrix(),视图可变换场景的坐标系统。这允许高级的导航特性,如缩放,旋转。为了方便,QGraphicsView也提供了在视图与场景之间进行坐标转换的函数:QGraphicsView::mapToScene(),QGraphicsView::mapForScene()。 img

The Item QGraphicsItem 是场景中图形items的基类。Graphics View 提供了一些标准的、用于典型形状的items。像矩形(QGraphicsRectItem),椭圆(QGraphicsEllipseItem),文本(QGraphicsTextItem),当你写定制的item时,那些最有用的一些QGraphicsItem特性也是有效的。除此这外,QGraphicsItem支持以下特性: *鼠标按、移动、释放、双击事件,鼠标悬停事件,滚轮事件,弹出菜单事件。 *键盘输入焦点,键盘事件。 *拖拽 *组,包括父子关系,使用QGraphicsItemGroup *碰撞检测 Items如同QGraphicsView一样,位于本地坐标系,它也为item与场景之间,item与item之间的坐标转换提供许多工具函数。而且,也像QGraphicsView一样,它使用矩阵来变换它的坐标系统:QGraphicsItem::matrix()。它对旋转与缩放单个的Item比较有用。 Items可以包含别的items(孩子)。父items的转换被它的子孙所继承。然而,它的所有函数(也就是,QGraphicsItem::contains(),QGraphicsItem::boundingRect(),QGraphicsItem::collidesWith()),不会积累这些转换,依然在本地坐标下工作。 QGraphicsItem通过QGraphicsItem::shape(),QGraphicsItem::collideWith())来支持碰撞检测。这两个都是虚函数。从shape()返回你的item的形状(以本地坐标QPainterPath表示),QGraphicsItem会为你处理所有的碰撞检测。假如你想提供自己的碰撞检测,你应该重新实现QGraphicsItem::collideWith()。

Graphics View 坐标系统

Graphics View基于笛卡尔坐标系。item在场景中的位置与几何形状通过x,y坐标表示。当使用未经变形的视图来观察场景时,场景中的一个单位等于屏幕上的一个像素。在Graphics View中有三个有效的坐标系统:Item坐标系,场景坐标系,视图坐标系。为了简化你的实现,Graphics View提供了方便的函数,允许三个坐标系之间相互映射。 当渲染时,Graphics View的场景坐标对应于QPainter的逻辑坐标,视图坐标与设备坐标相同。

img

Item坐标

Items位于它们自己的坐标系中。它的坐标都以点(0,0)为中心点,这也是所有变换的中心点。在item坐标系中的几何图元,经常被称为item点,item线,item矩形。当创建一个定制的item,item坐标是所需要考虑的。QGraphicsScene与QGraphicsView可以为你执行所有转换,这使得实现定制的item变得容易。举例来说,假如你收到鼠标按或是拖进入事件,事件的位置以item坐标的形式给出。QGraphicsItem::contain()虚函数,当某个点的位置在你的item范围内时,返回true,否则返回false。这个点参数使用item坐标,相似地,item的包围矩形与形状也使用item坐标。 Item位置指的是item的中心点在它父亲的坐标系中的坐标。以这种思想来看,场景指的就是那些祖先最少的item的“父亲”。最上级的Item位置就是在场景中的位置。 子坐标与父坐标之间是相关的,假如孩子未经变换,子坐标与父坐标之间的差值等于在父坐标系下,父item与子item之间的距离。例如,假如一个未经变换的子item位置与其父item的中心重合,那么这两个item的坐标系统完全相同。如果孩子的位置是(10,0),那么孩子坐标系中的(0,10)点,对应于父坐标系中的(10,10)点。 因为item的位置与变换是相对于父item的,子item的坐标不会被父亲的变换影响,尽管父item的变换隐含地对子item做了变换。在上面的例子中,即使父item旋转,缩放,子item的(0,10)点依然对应于父item的(10,10)点。然而,相对于场景来讲,子item会遵循父item的变换。假如父item被缩放(2X,2X),子item的位置在场景中的坐标是(20,0),它的(10,0)点则与场景中的(40,0)对应 。除了QGraphicsItem::pos(),QGraphicsItem的函数以Item坐标工作,如一个item’s包围矩形总是以item坐标的形式给出。

场景坐标

场景坐标系统描述了每个最顶级item的位置,也是从视图向场景投递场景事件的基础。场景中的每个item有场景位置与包围矩形(QGraphicsItem::scenePos(),QGraphicsItem::sceneBoundingRect()), 另外,它有自己本地item位置与包围矩形。场景位置描述了item在场景坐标下的位置,它的场景包围矩形则用于QGraphicsScene决定场景中哪块区域发生了变化。场景中的变化通过QGraphicsScene::changed()信号来通知,它的参数是场景矩形列表。

视图坐标

视图坐标是widget的坐标,视图坐标中每个单位对应一个像素。这种坐标的特殊之处在于它是相对于widget或是视口的,不会被所观察的场景所影响。QGraphicsView的视口的左上角总是(0,0),右下角总是(视口宽,视口高)。所有的鼠标事件与拖拽事件,最初以视图坐标表示,就应该把这些坐标映射到场景坐标以便与item交互。

坐标映射

经常,处理场景中item时,在场景与item之间,item与item之间,视图与场景之间进行坐标映射,形状映射是非常有用的。举例来讲,当你在QGraphicsView的视口中点击鼠标时,你应该通过调用QGraphicsView::mapToScence()与QGraphicsScene::itemAt()来获知光标下是场景中的哪个item。假如你想获知一个item位于视口中的什么位置,你应该先在item上调用QGraphicsItem::mapToScene(),然后调用QGraphicsView::mapFromScene()。最后,假如你想在一个视图椭圆中有哪些items,你应该把QPainterPath传递到mapToScene(),然后再把映射后的路径传递到QGraphicsScene::items()。 你可以调用QGraphicsItem::mapToScene()与QGraphicsItem::mapFromScene()在item与场景之间进行坐标与形状的映射。也可以在item与其父item之间通过QGraphicsItem::mapToParent()与QGraphicsItem::mapFromItem()进行映射。所有映射函数可以包括点,矩形,多边形,路径。视图与场景之间的映射也与此类似。对于从视图与item之间的映射,你应该首先映射到场景,然后再从场景向item进行映射。

关键特性

缩放与旋转

QGraphicsView通过QGraphicsView::setMatrix()支持同QPainter一样的仿射变换,通过对一个视图应用变换,你可以很容易地支持普通的导航特性如缩放与旋转。下面是一个例子:

class View:;public QGraphicsView
{
	Q_OBJECT
	//…..
	public slots:
		void zoomIn() {scale(1.2,1.2);}
		void zoomOut() {scale(1/1.2,1/1.2);}
		void rotateLeft() {rotate(-10);}
		void rotateRight() {rotate(10);}
};

这些槽应与QToolButtons联接,并使autoRepeat有效。当对视图变换时,QGraphicsView会对视图中心进行校正。

拖拽

因为QGraphicsView继承自QWidget,它也提供了像QWidget那样的拖拽功能,另处,为了方便,Graphics View柜架也为场景,每个item提供拖拽支持。当视图接收到拖拽事件,它可翻译为QGraphicsSceneDragDropEvent,再发送到场景。场景接管这个事件,把它发送到光标下接受拖拽的第一个item。 从一个item开始拖拽时,创建一个QDrag对象,传递开始拖拽的那个widget的指针。Items可以同时被多个视图观察,但只有一个视图可以开始拖拽。拖拽在多数情况下是从按下鼠标或是移动鼠标开始的,因此,在 mousePressEvent()或mouseMoveEvent()中,你可以从事件中得到那个原始的widget指针,例如: void CustomItem::mousePressEvent(QGraphicsSceneMouseEvent *event) { QMimeData *data=new QMimeData; data->setColor(Qt::green); QDrag *drag=new QDrag(event->widget()); drag->setMimeData(data); drag->start(); } 为了在场景中载取拖拽事件,你应重新实现QGraphicsScene::dragEnterEvent()和在QGraphicsItem的子类里任何与你特定场景需要的事件处理器。items也可以通过调用QGraphicsItem::setAcceptDrops()获得拖拽支持,为了处理将要进行的拖拽,你需要重新实现QGraphicsItem::dragEnterEvent(),QGraphicsItem::dragMoveEvent(),QGraphicsItem::dragLeaveEvent()和QGraphicsItem::dropEvent()。

光标与工具提示

像QWidget一样,QGraphicsItem也支持光标(QgraphicsItem::setCursor)与工具提示(QGraphicsItem::setToolTip())。当光标进入到item的区域,光标与工具提示被QGraphicsView激活(通过调用QGraphicsItem::contains()检测)。你也可以直接在视图上设置一个缺省光标(QGraphicsView::setCursor)。

动画

Graphics View支持几种级别的动画。你可以很容易地通过把QGraphicsItemAnimatoin与你的item联结来 装配出动画路径,这允许以时间线来控制动画,在所有平台上以稳定的速率运作。QGraphicsItemAnimation允许你为item的位置,旋转,缩放,剪切,变换等产生一条路径,动画可以用QSlider来控制,或更为普遍使用的QTimeLine。 另一种是从QObject和QGraphicsItem继承,item可以设置自己的定时器,以在QObject::timeEvent()中增加步进的方式来控制动画。 第三种,是通过调用QGraphicsScene::advance()来推进场景,它又依次调用QGraphicsItem::advance().

OpenGL渲染

为了使用OpenGL渲染,你要设置一个新的QGLWidget作为QGraphicsView的视口:QGraphicsView::setViewPort()。假如你让OpenGL提供反锯齿功能,你需要OpenGL采样缓冲支持。 QGraphicsView view(&scene); view.setViewport(new QGLWidget(QGLFormat(QGL::SampleBuffers)));

Item组

通过把一个item做为另一个item的孩子,你可以得到item组的大多数本质特性:这些items会一起移动,所有变换 会从父到子传递。QGraphicsItem也可以为它的孩子处理所有的事件,这样就允许以父亲代表它所有的孩子,可以有效地把所有的items看作一个整体。 另外,QGraphicsItemGroup是一个特殊的item,它既对孩子事件进行处理又有一个接口把items从一个组中增加和删除。把一个item加到 QGraphicsItemGroup仍会保留item的原始位置与变换,而给一个item重新指定父item则会让item根据其新的父亲重新定位。可以用QGraphicsScene::createItemGroup()建组。

//myitem.cpp
//myitem.h
#ifndef MYITEM_H
#define MYITEM_H

#include <QGraphicsItem>

class MyItem : public QGraphicsItem
{
public:
MyItem();
QRectF boundingRect() const;
void paint(QPainter *painter,const QStyleOptionGraphicsItem *option,QWidget *widget);
};

#endif // MYITEM_H
//myitem.cpp
#include "myitem.h"
#include
MyItem::MyItem()
{
}

QRectF MyItem::boundingRect() const
{
qreal adjust=0.5;
return QRectF(-18-adjust,-22-adjust,36+adjust,60+adjust);
}

void MyItem::paint(QPainter *painter,const QStyleOptionGraphicsItem *option,QWidget *widget)
{
painter->drawRect(0,0,200,200);

}
//main.cpp
#include <QtGui/QApplication>
#include 
#include 
 #include 
 #include 
#include"myitem.h"
int main(int argc, char *argv[])
{
    QApplication a(argc, argv);

    QGraphicsScene scene;
    scene.setSceneRect(-300,-300,600,600);
    scene.setItemIndexMethod(QGraphicsScene::NoIndex);

    MyItem *item=new MyItem;
    scene.addItem(item);

    QGraphicsView view(&scene);
    view.setRenderHint(QPainter::Antialiasing);
    view.setCacheMode(QGraphicsView::CacheBackground);
    view.setViewportUpdateMode(QGraphicsView::BoundingRectViewportUpdate);
    view.setDragMode(QGraphicsView::ScrollHandDrag);
    view.resize(400,300);
    view.show();
    return a.exec();
}

Linux ALSA 配置

OS : opensuse 11.04

查看系统audio设备

查看audio设备摘要信息

$ aplay -l

可能的输出:

**** List of PLAYBACK Hardware Devices ****
card 0: Intel [HDA Intel], device 0: ALC662 rev1 Analog [ALC662 rev1 Analog]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 0: Intel [HDA Intel], device 1: ALC662 rev1 Digital [ALC662 rev1 Digital]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 1: NVidia [HDA NVidia], device 3: HDMI 0 [HDMI 0]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 1: NVidia [HDA NVidia], device 7: HDMI 0 [HDMI 0]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 1: NVidia [HDA NVidia], device 8: HDMI 0 [HDMI 0]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
card 1: NVidia [HDA NVidia], device 9: HDMI 0 [HDMI 0]
  Subdevices: 1/1
  Subdevice #0: subdevice #0

查看audio详细信息

$ aplay -L

可能输出:

 null
    Discard all samples (playback) or generate zero samples (capture)
front:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Analog
    Front speakers
surround40:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Analog
    4.0 Surround output to Front and Rear speakers
surround41:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Analog
    4.1 Surround output to Front, Rear and Subwoofer speakers
surround50:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Analog
    5.0 Surround output to Front, Center and Rear speakers
surround51:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Analog
    5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Analog
    7.1 Surround output to Front, Center, Side, Rear and Woofer speakers
iec958:CARD=Intel,DEV=0
    HDA Intel, ALC662 rev1 Digital
    IEC958 (S/PDIF) Digital Audio Output
hdmi:CARD=NVidia,DEV=0
    HDA NVidia, HDMI 0
    HDMI Audio Output
hdmi:CARD=NVidia,DEV=1
    HDA NVidia, HDMI 0
    HDMI Audio Output
hdmi:CARD=NVidia,DEV=2
    HDA NVidia, HDMI 0
    HDMI Audio Output
hdmi:CARD=NVidia,DEV=3
    HDA NVidia, HDMI 0
    HDMI Audio Output

配置文件

最简单的/etc/asound.conf格式如下(用户配置文件为~/.asoundrc

defaults.ctl.card 0
defaults.pcm.card 0
defaults.timer.card 0

pcm.!default {
        type hw
        card 0
        device 0
}

ctl.!default {
        type hw
        card 0
        device 0
}

其中card和device的确定从aplay -l命令得到。对比aplaya -l的输出,可以看到上面的配置文件使用了Intel的音频设备。

设置默认输出设备

首先根据aplay -l的输出来确定声卡ID和设备ID

把Intel模拟输出作为默认audio输出设备

defaults.ctl.card 0
defaults.pcm.card 0
defaults.timer.card 0

pcm.!default {
	type hw
	card 0
	device 0
}

ctl.!default {
	type hw
	card 0
	device 0
}

另一种简化格式:

defaults.pcm.card 0
defaults.pcm.device 0
defaults.ctl.card 0

把Nvidia HDMI数字输出作为默认audio输出设备

defaults.ctl.card 1
defaults.pcm.card 1
defaults.timer.card 1

pcm.!default {
	type hw
	card 1
	device 7
}

ctl.!default {
	type hw
	card 1
	device 7
}

另一种简化格式:

defaults.pcm.card 1
defaults.pcm.device 7
defaults.ctl.card 1

测试audio设备

测试指定audio设备

$ speaker-test -D front:Intel -c2 -r44100 -FS16_LE -twav

或者

speaker-test -c 2 -r 48000 -D hw:1,7

测试默认audio设备

$ speaker-test -c2 -r44100 -FS16_LE -twav

调节audio设备

$ alsamixer -c 0 <---[声卡编号]

配置文件的保存和还原

$ alsactl store -f /var/lib/alsa/asound.state
$ alsactl restore -f /var/lib/alsa/asound.state

一些其它问题

怎样改变声卡的识别顺序

可以编辑/etc/modprobe.d/50-sound.conf文件,比如:

options snd slots=snd-hda-intel,snd-hda-intel
# u1Nb.XgOz+05oSl4:Intel Corporation
alias snd-card-0 snd-hda-intel
# NXNs.vUieta7noB9:nVidia Corporation
alias snd-card-1 snd-hda-intel

options snd-hda-intel index=1,0

这里需要关心的是最后一行的index=1,0 重启机器后使用命令 cat /proc/asound/cards 参看输出:

 0 [NVidia         ]: HDA-Intel - HDA NVidia
                      HDA NVidia at 0xeb000000 irq 17
 1 [PCH            ]: HDA-Intel - HDA Intel PCH
                      HDA Intel PCH at 0xeb300000 irq 42

参考文档1